Solving Quadratic Equations by taking Square Roots

ILOM JOJOS OF SALVES Sides of the equals sign

AJOUS.

Solving by taking square roots

 An alternate method of solving a quadratic equation is using the Principle of Taking the Square Root of Each Side of an **Equation**

If $x^2 = a$, then $x = \pm \sqrt{a}$

Ex: Solve by taking square roots $3x^2 - 36 = 0$

First, isolate
$$x^2$$
: $3x^2 - 36 = 0$
 $3x^2 = 36$
 $x^2 = 12$

Now take the square root of both sides:

$$\sqrt{x^2} = \sqrt{12}$$

$$x = \pm \sqrt{12}$$

$$x = \pm \sqrt{2 \cdot 2 \cdot 3}$$

$$x = \pm 2\sqrt{3}$$

Ex: Solve by taking square roots $4(z-3)^2 = 100$

First, isolate the squared factor:

$$4(z-3)^2 = 100$$
$$(z-3)^2 = 25$$

Now take the square root of both sides:

$$\sqrt{(z-3)^2} = \sqrt{25}$$

$$z-3=\pm\sqrt{25}$$

$$z-3=\pm 5$$

$$z=3\pm5$$

$$\Rightarrow$$
 z = 3 + 5 = 8 and z = 3 - 5 = -2

Ex: Solve by taking square roots $5(x + 5)^2 - 75 = 0$

First, isolate the squared factor:

$$5(x + 5)^2 = 75$$

$$(x + 5)^2 = 15$$

Now take the square root of both sides:

$$\sqrt{(x+5)^2} = \sqrt{15}$$

$$x+5=\pm\sqrt{15}$$

$$x = -5 \pm \sqrt{15}$$

$$x+5 = \pm \sqrt{15}$$

$$x = -5 \pm \sqrt{15}$$

$$x = -5 - \sqrt{15}$$

Name :

Score:

Teacher:

Date: _

Solve Quadratics by Taking the Square Root

Find the value of the variable. Round to the nearest hundredth if necessary.

1)
$$g^2 = 64$$

6)
$$r^2 = 40$$

2)
$$r^2 = 14$$

7)
$$y^2 = 25$$

3)
$$g^2 = 12$$

8)
$$y^2 = 64$$

4)
$$r^2 = 4$$

9)
$$s^2 = 5$$

5)
$$m^2 = 7$$

10)
$$r^2 = 36$$

Teacher:

Date : _____

Solve Quadratics by Taking the Square Root

Find the value of the variable. Round to the nearest hundredth if necessary.

1)
$$w^2 + 10 = 50$$

6)
$$d^2 + 7 = 21$$

2)
$$q^2 + 5 = 33$$

7)
$$q^2 + 4 = 22$$

3)
$$q^2 - 6 = 19$$

8)
$$s^2 - 4 = 21$$

4)
$$y^2 - 4 = 1$$

9)
$$r^2 - 4 = -1$$

5)
$$p^2 + 3 = 43$$

10)
$$m^2 + 6 = 30$$

jebra i	10	bra	ł

Quadratics

⊿me:

Date:

Solving Quadratic Equations Using Square Roots

UNIT QUESTION: How are real life scenarios represented by quadratic functions?

Today's Question: When does a quadratic have an imaginary solution? MCC9-12.A.REI.4b

Solving Quadratic Equations Using Square Roots

- 1. Get x2 by itself or get binomial squared by itself
- 2. Take the square root of both sides of the equation.
- 3. There will ALWAYS be a positive answer and a negative answer.
- 4. Check your answers!!!

Solve each equation.

1.
$$x^2 - 4 = 0$$

2.
$$\frac{1}{2}x^2 + 3 = 12$$

3.
$$2(x^2-5)=-x^2-1$$

4.
$$\frac{1}{3}(x+4)^2-1=5$$

5.
$$4(x+5)^2=64$$

6.
$$2x^2 - 338 = 0$$

7.
$$5(x-4)^2 = 125$$

$$8. \quad \frac{1}{7}x^2 - 3 = 4$$

Name: _____

_ Date: _____

Solving Quadratics by Using Square Roots

Solve each quadratic equation.

1.
$$x^2 + 4 = 29$$

2.
$$3x^2 - 7 = 47$$

3.
$$x^2 + 11 = 16$$

4.
$$(x+4)^2 = 121$$

$$5. \ (2x-3)^2 = 9$$

6.
$$(x-7)^2 = 99$$

7.
$$(x+3)^2+6=18$$

8.
$$(2x+6)^2-8=24$$

9.
$$x^2 + 21 = 5$$

10.
$$3(x+4)^2 = 9$$

11.
$$3(x^2-4)=2x^2-1$$

12.
$$\frac{2}{5}x^2 - 3 = 7$$

13.
$$x^2 - 14x + 13 = 0$$

14.
$$2x^2 - 7x = x^2 - 12$$

15.
$$2x^2 - 15 = -7x$$