\qquad
Triangle Congruence: SSS and HL

In similar triangles, we proved that angles are congruent and sides are proportional. Now we are dealing with congruent triangles.
In congruent triangles, angles are congruent and sides are congruent.
The parts of congruent triangles that "match" are called corresponding parts.

Complete the congruence statement for the following.
$\triangle \mathrm{ABC} \cong \triangle$

$\Delta \mathrm{GHK} \cong \Delta$

$\triangle \mathrm{ACB} \cong \triangle$

Example: Given $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Make six congruence statements about the corresponding parts.
Mark the diagrams with hash marks and arcs to identify congruent parts.
$\angle \mathrm{A} \cong$ \qquad $\overline{\mathrm{AB}} \cong$ \qquad
$\angle B \cong$ \qquad
$\overline{\mathrm{AC}} \cong$ \qquad
$\angle \mathrm{C} \cong$ \qquad
$\overline{\mathrm{BC}} \cong$ \qquad

There are 4 special properties that allow you to add marks to your triangles:

1. Reflexive Property
a. This is when the two triangles share a side. We state that $\overline{A B} \cong \overline{A B}$

2. Vertical Angles
a. Vertical angles can be marked congruent in the two triangles. In this case we state (and mark) that $<M N Q \cong<$ ONP

3. Alternate Interior Angles
a. If there are parallel lines, then you can mark alternate interior angles. In this case we state (and mark) that $<E A B \cong<B D C$ and also $<A E B \cong<B C D$

4. Base Angle Theorem
a. In isosceles triangles if two sides are marked congruent then their opposite angles are marked congruent AND if two angles are marked congruent then their opposite sides are marked congruent.
i. $\angle B C A \cong<B A C$ since $\overline{A B} \cong \overline{B C}$

ii. $\overline{A B} \cong \overline{B C}$ since $<B C A \cong<B A C$

There are 5 methods to prove that triangles are congruent:

1. Side Side Side (SSS)
2. Hypotenuse Leg (HL)
3. Side Angle Side (SAS)
4. Angle Angle Side (AAS)
5. Angle Side Angle (ASA)

Side Side Side

| SSS | Side-Side-Side (SSS) |
| :--- | :--- | :--- | :--- |
| If the three sides of one triangle are | |
| congruent to the three sides of a second triangle, | |
| then the two triangles are congruent. | |

1. Determine whether the triangles are congruent. If they are, write a congruence statement explaining why they are congruent.
\qquad
Δ $\cong \Delta$ \qquad by \qquad

YOU TRY! Are these triangles congruent by SSS? If so, name them. Remember your special properties! T
1.

$\Delta _\cong \Delta$

$\Delta _\cong \Delta$ \qquad
3.

$\Delta \underline{\cong}$ \qquad

Parts of a Right Triangle

HL

If the hypotenuse and a leg of one right triangle is congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent

Hypotenuse-Leg (HL)

$\Delta \mathrm{NMJ} \cong \Delta \mathrm{KMJ}$
$\triangle D E F \cong \triangle C B A$

Hypotenuse Leg Checklist:
\checkmark Can you add any marks? (ONLY USE THE FOUR!)
\checkmark Are both triangles right triangles? (they must have marked right angles)
\checkmark Are the hypotenuse of both congruent? (draw the arrow to help find this)
\checkmark Is there one pair of congruent legs marked?

Can you use HL to prove the two triangles congruent?

1. \qquad
If yes, write a congruence statement. If not, explain why not.

2. \qquad 3. \qquad 4. \qquad 5. \qquad

The next three theorems utilize angles:
Included Angle : The angle directly between two sides. "The sandwiched angle" Name the angle included between $\quad \overline{A B}$ and $\overline{B C}$ $\overline{B C}$ and $\overline{A C}$ \qquad $\overline{A C}$ and $\overline{A B}$ \qquad

Included Side: The side directly between two angles.

1. In $\triangle M A T$, which side is included between $<A$ and $<T$?
2. In $\triangle M A T$, which side is included between $<M$ and $<A$?
3. Which side is not included between angles A and T ?

Side Angle Side

Side-Angle-Side (SAS)				If two sides and the included angle of one
triangle are congruent to two sides and the included angle of a				
second triangle, then the				
two triangles are				
congruent.				

Side Angle Side Checklist:
\checkmark Can you add any marks? (Only use the four! Reflexive property, Vertical angles, Alternate Interior Angles, and Base Angle Theorem)
\checkmark Look for two congruent sides with an included angle on both

- "congruent side then congruent angle then congruent side"

Examples: Write the statement if the triangles are congruent

1. \qquad by \qquad
2. \qquad by \qquad

A non-example:

This would not be congruent by SAS! The angles are not included angles

Angle Side Angle

|

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

Angle Side Angle Checklist:

\checkmark Can I add any marks? (ONLY OUR FOUR ALLOWED! Reflexive property, vertical angles, alternate interior angles, or base angle theorem).
\checkmark Look for two congruent angles with an included side

- "congruent angle then congruent side then congruent angle"

Examples: Write the statement if the triangles are congruent.

1. \qquad by \qquad
2. \qquad by \qquad

Non-Example:

These are not congruent because they only have angles marked (no sides). ANGLE-ANGLE-ANGLE is not a congruency theorem!

Angle Angle Side

Angle-Angle-Side Checklist:

\checkmark Can I add any marks? (ONLY THE FOUR ALLOWED MARKS! Reflexive property, vertical angles, alternate interior angles, base angle theorem)
\checkmark Do I have two congruent angles and a non-included side that is congruent?

- "congruent angle then congruent angle then congruent side"

Examples: Write the statements if the triangles are congruent

1. \qquad by

2. \qquad by \qquad

A non-example:

This would not be an example because there are two congruent pairs of sides and one congruent pairs of angles with the wrong ordering. Here there is side then side then angle, or angle then side then side. There are no bad words in math!

