## Add/Subtract Radicals

$\square$ In order to add/subtract expressions that contain radicals, the radicands MUST be identical . . . Aka. LIKE TERMS!
$\square$ Remember:
$\square \quad 5 \mathrm{x}+2 \mathrm{x}=7 \mathrm{x}$
Treat the radical just like you would treat a variable.
$\square$ So...

$$
5 \sqrt{3}+2 \sqrt{3}=7 \sqrt{3}
$$

## Can you add non-like terms?

$\square$ For instance: $4 \mathrm{x}+3 \mathrm{y}$
$\square$ NO!
$\square$ Likewise, you cannot add radicals w/ different radicands.

$$
3 \sqrt{2}+4 \sqrt{5}
$$

Cannot add!
Leave like it is.

## You try.

Add /Subtract.

## Answers!

1. $5 \sqrt{6}-2 \sqrt{6}$
2. $5+6 \sqrt{7}-2 \sqrt{7}-3$
3. $8 \sqrt{3}+6 \sqrt{2}-\sqrt{3}+2 \sqrt{2}$
4. $a \sqrt{x}+b \sqrt{x}$
$3 \sqrt{6}$
$2+4 \sqrt{7}$
$7 \sqrt{3}+8 \sqrt{2}$
$(a+b) \sqrt{x}$

## What if the radicands aren't $=$ ?

Simplify all square roots first to see if the radicands are the same.
For example: $5 \sqrt{28}-6 \sqrt{48}+10 \sqrt{12}$

$$
\begin{aligned}
& =5 \sqrt{2 \cdot 2 \cdot 7}-6 \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}+10 \sqrt{2 \cdot 2 \cdot 3} \\
& =10 \sqrt{7}-24 \sqrt{3}+20 \sqrt{3}
\end{aligned}
$$

$$
=10 \sqrt{7}-4 \sqrt{3}
$$

## You Try!

Add.

$$
\sqrt{80}+\sqrt{98}+\sqrt{128}
$$

$$
\begin{aligned}
& 4 \sqrt{5}+7 \sqrt{2}+8 \sqrt{2} \\
& 4 \sqrt{5}+15 \sqrt{2}
\end{aligned}
$$

## Summarizer

A common mistake people make is to tell me that

$$
2 \sqrt{5}+2 \sqrt{5}=4 \sqrt{10}
$$

Why is this not true?

Be sure to NOT do that because . . .

$$
2 \sqrt{5}+2 \sqrt{5} \neq 4 \sqrt{10}
$$

