Add/Subtract Radicals

 In order to add/subtract expressions that contain radicals, the radicands MUST be identical . . . Aka. LIKE TERMS!

- □ Remember:
- $\Box \quad 5\mathbf{x} + 2\mathbf{x} = 7\mathbf{x}$

Treat the radical just like you would treat a variable.

So \dots $5\sqrt{3} + 2\sqrt{3} = 7\sqrt{3}$

Can you add non-like terms?

- \Box For instance: 4x + 3y
- □ NO!
- Likewise, you cannot add radicals w/ different radicands.

$$3\sqrt{2} + 4\sqrt{5}$$

Cannot add! Leave like it is.

You try.

 \Box Add /Subtract.

1.
$$5\sqrt{6} - 2\sqrt{6}$$

2. $5 + 6\sqrt{7} - 2\sqrt{7} - 3$
3. $8\sqrt{3} + 6\sqrt{2} - \sqrt{3} + 2\sqrt{2}$

4. $a\sqrt{x} + b\sqrt{x}$

Answers! $3\sqrt{6}$ $2 + 4\sqrt{7}$ $7\sqrt{3} + 8\sqrt{2}$ $(a + b)\sqrt{x}$

What if the radicands aren't =?

- Simplify all square roots first to see if the radicands are the same.
- For example: $5\sqrt{28} 6\sqrt{48} + 10\sqrt{12}$

$$= 5\sqrt{2 \cdot 2 \cdot 7} - 6\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3} + 10\sqrt{2 \cdot 2 \cdot 3}$$

$$=10\sqrt{7}-24\sqrt{3}+20\sqrt{3}$$

$$=10\sqrt{7}-4\sqrt{3}$$

You Try!

Add.

 $\sqrt{80} + \sqrt{98} + \sqrt{128}$

 $4\sqrt{5} + 7\sqrt{2} + 8\sqrt{2}$ $4\sqrt{5} + 15\sqrt{2}$

Summarizer

A common mistake people make is to tell me that

$$2\sqrt{5}+2\sqrt{5}\,=4\sqrt{10}$$

Why is this not true?

Be sure to NOT do that because . . .

 $2\sqrt{5}+2\sqrt{5}\neq 4\sqrt{10}$